Better Plants Online Learning Series

We'll be starting in just a few minutes....

Visit our Online Learning Series
page on the Solution Center to
see our full series lineup, RSVP,
and access previously recorded
webinars.

Online Learning Series – Webinar #12 Process Cooling Systems

Eli Levine

Office of Energy Efficiency and Renewable Energy

Eli Levine
U.S. Department of Energy

Better Plants Online Learning Series

Webinar Topic	Speaker	Date	Time	Link
7. Energy Treasure Hunts with EPA	Alex Floyd (Tyson) Walt Brockway (ORNL) Walt Tunnessen (EPA)	08/20/20	1:00 - 2:00pm EST	Watch Recording
8. Pumps and Fans	Thomas Wenning (ORNL)	08/27/20	1:00 - 2:30pm EST	Watch Recording
9. Process Heating and Waste Heat Reduction	Sachin Nimbalkar (ORNL)	09/03/20	1:00 - 2:30pm EST	Watch Recording
10. Field Validation	Eli Levine (DOE) Paul Sheaffer (LBNL)	CANCELED	Rescheduled Date TBD	
11. Energy Management During a Pandemic	TBD	09/17/20	1:00 - 2:00pm EST	Watch Recording
12. MEASUR Tool Suite	Kristina Armstrong (ORNL)	09/24/20	1:00 - 2:00pm EST	
13. Process Cooling	Wei Guo (ORNL)	10/01/20	1:00 - 2:30pm EST	

Please go to www.slido.com

using your mobile device, or by opening a new window

Enter Event Code

Polls

Tell us how you're feeling!

Please go to www.slido.com and enter code #DOE to respond

Dr. Wei Guo Oak Ridge National Lab

Process Cooling Systems

Wei Guo, PhD, PE Oak Ridge National Lab

System Overview

Purpose of Process Cooling Systems

- Space temperature and humidity control
 - Process
 - Comfort
- Process temperature control
 - Quenching processes
 - Chemical reactions
 - Process equipment cooling
- De-humification

https://icon-library.net/

https://encrypted-tbn0.gstatic.com/

Why Do We Care?

Energy cost

Cool and dry air and chilled water can be very

expensive

Complexity

Many components

Many opportunities

- Quick payback
- Easy to replicate

Source: Vyron

Source: www.chiller.com

Process Cooling System Components

Air side

- Air handling units
- Make-up air units
- Exhaust fans
- Water side (Chilled water)
 - Chillers
 - Cooling towers
 - Pumps

Air Side – Air Handling Units (AHUs)

Provide cool and

dehumidified/humidified mixed air

Fans

- Supply fans, return fans (optional)
- Overcome pressure losses at coils, filters, ductwork
- VFD

Dampers

- Return air dampers
- Outdoor air dampers

https://i.pinimg.com

Air Side – AHUs

Coils

- Preheat coil (Leaving air temp: 35F–38F)
- Chilled water coil (Leaving air temp: 42F– 45F)
- Reheat coil (satisfying heat loads)

Control Valves

- Preheat coil valve
- Chilled water valve
- Reheat coil valve

Chilled water valve

- 3-Way
- 2-Way

Credit: Chiller System Design and Control by Trane

Air Side – AHUs – Filters

- Measured by Minimum
 Efficiency Reporting Value
 (MERV) (designed by ASHRAE in 1987)
- MERV 1-16
- Energy
 - Higher MERV #, higher
 pressure drop, more fan energy
 consumption
 - Air purification: no more, no less, just right

MERV VALUE	The filter will trap Average Particle Size Efficiency 0.3 - 1.0 Micron	The filter will trap Average Particle Size Efficiency 1.0 - 3.0 Micron	The filter will trap Average Particle Size Efficiency 3.0 - 10.0 Micron	Types of things these filters will trap	
MERV 1	-	3#3	Less than 20%	Pollen, dust mites, standing dust, spray paint dust, carpet fibers	
MERV 2	(2)	-	Less than 20%		
MERV 3		4	Less than 20%		
MERV 4	12	120	Less than 20%		
MERV 5	-		20% - 34%	Mold spores, hair spray, fabric protector, cement dust	
MERV 6		-(<u>5</u> ()	35% - 49%		
MERV 7	S#0	1877	50% - 69%		
MERV 8	5 * 2	383	70% - 85%		
MERV 9	:±:	Less than 50%	85% or better	Humidifier dust, lead dust, auto emissions, milled flour	
MERV 10	(#)	50% - 64%	85% or better		
MERV 11	193	65% - 79%	85% or better		
MERV 12	S#S	80% - 89%	90% or better		
MERV 13	Less than 75%	90% or better	90% or better	Bacteria, most tobacco smoke, proplet Nuceli (sneeze)	
MERV 14	75% - 84%	90% or better	90% or better		
MERV 15	85% - 94%	90% or better	90% or better		
MERV 16	95% or better	90% or better	90% or better		

Credit: Filtr.com

Air Side – Make-up Air Units (MAUs)

- Structure is very similar to AHUs
- Provide cooled and dehumidified/humidified 100% outdoor air (OA)

Energy

- The more OA, more energy consumption
- OA quantity: no more, no less, justright

https://i.pinimg.com

Air Side – Make-up Air Units (MAUs)

Annual Cooling Load of Outdoor Air

		Ventilation Load Index (Ton-hrs/scfm/yr)		Cumulative Load Ratio
City	State	Latent + Sensible	Total	Latent:Sensible
Albuquerque	NM	0.2 + 1.0	1.2	0.2:1
Boston	MA	2.0 + 0.3	2.3	6.4:1
Detroit	MI	2.4 + 0.3	2.7	7.4:1
Minneapolis	MN	2.4 + 0.4	2.8	6.2:1
Pittsburgh	PA	2.5 + 0.4	2.9	5.8:1
New York	NY	2.6 + 0.5	3.1	5.1:1
Chicago	IL	2.6 + 0.5	3.1	5.0:1
Las Vegas	NV	0.2 + 3.7	3.9	0.04:1
Indianapolis	IN	4.0 + 0.6	4.6	6.6:1
Lexington	KY	4.1 + 0.6	4.7	7.4:1
Colorado Spr.	CO	0.6 + 4.2	4.8	0.1:1
Omaha	NE	4.0 + 0.8	4.8	5.3:1
Phoenix	AZ	1.3 + 5.0	6.2	0.3:1
St. Louis	MO	5.3 + 1.1	6.4	4.7:1
Oklahoma City	OK	5.0 + 1.6	6.6	3.2;1
Richmond	VA	5.9 + 0.8	6.7	7.2:1
Raleigh	NC	6.0 + 0.9	6.9	6.8:1
Atlanta	GA	6.2 + 0.9	6.9	6.7:1
Nashville	TN	6.2 + 1.4	7.6	4.6:1
Little Rock	AK	7.3 + 1.6	8.8	4.7:1
Charleston	SC	9.0 + 1.2	10.3	7.3:1
San Antonio	TX	10.4 + 2.4	12.8	4.4:1
New Orleans	LA	12.3 + 1.8	14.1	6.8:1
Miami	FL	17.8 + 2.7	20.5	6.7:1

Credit: Lewis G. Harriman III, etc.

https://i.pinimg.com

Air Side – Exhaust Fans

Purpose

- Exhaust indoor air to maintain indoor pressure
- Exhaust hot indoor air to maintain space temperature

Controls

- Manual on/off
- Automatic based on temperature
- Automatic based on the status of make-up air units

Energy

• \$500/HP-yr (given \$0.1/kWh; 90% load factor)

www.kamfri.com

Water Side

Generation

- Chillers
- Cooling towers
- Chilled water primary pumps
- Condensing water pumps
- Distribution

Air Side
Chilled water secondary pumps

Piping network

Water Side - Chillers and Chilled Water Pumps

- Chiller
 - Provide CHW at desired temperature
 - Working principle: vapor compression or absorption cycle
 - Three efficiency driving factors
 - Condensing water temperature
 - CHW temperature
 - Part load ratio
 - Metric of efficiency: kW/ton
- Primary pump
 - Circulate CHW through evaporator

Water Side – Condensing Water Side Overview

- Cooling tower
 - Cool condensing water to desired temperature
 - Working principle: water evaporation
 - Three efficiency driving factors
 - Outdoor air wet-bulb temp.
 - Draft air flow rate
 - Design of cooling towers
 - Metric of energy efficiency: gpm/hp
- Condenser pump
 - Circulate condensing water

Chilled Water Primary/Secondary Configuration

The common
 pipe is to handle
 the flow difference
 between
 secondary and
 primary loops.

Chilled Water Primary-only Configuration with VFD

The bypass pipe is to handle the flow difference between the secondary loop and chiller minimum flow rate (typically 20%).

Energy Conservation Measures

Energy Conservation Measures – Reduce Cooling Loads

- Piping insulation
- Remove heat sources away from cooled areas/systems
- Isolate cooled space from other spaces

Source: Fraser Engineering

Energy Conservation Measures – AHUs and MAUs

- Turn off during plant shutdowns
 - Weekends
 - Off shifts
- Reset space/process setpoint
 - Avoid cooling/dehumidifying spaces/process when not needed
- Avoid over-ventilate the space
- Filters
 - Avoid over-filter air
 - Replace filters regularly based on pressure drop

Energy Conservation Measures – AHUs and MAUs

Install VFD to supply fans

- Vary fan speed based on static pressure set point
- Provide no more than needed air flow rate

Proper controls of preheat coil

- Appropriate temp. setpoints
- Examine preheat coil valve regularly
- Reset supply air temperature setpoint
 - Reset based on OAT
 - Avoid overcooling of the space
 - Reduce reheat energy at the space

Energy Conservation Measures – AHUs and MAUs

- Air Economizers
- Energy RecoveryUnits (ERUs)
 - Enthalpy wheels
 - Heat pipes
 - Coil energy recovery loops

Energy Conservation Measures – Dehumidification

- For low Dew Point requirements, install desiccant wheels
 - Saves energy by not using over-cooled chilled water and supply air
 - Can achieve very low dew point with moderately cold chilled water (beneficial for chillers' energy efficiency)
- Typically used in some clean room applications
- Things to keep in mind
 - Avoid over-dehumidification
 - Consider desiccant wheels instead of dedicated verylow temperature glycol system

Energy Conservation Measures – Exhaust Fans

Energy

- \$500/HP-yr (given \$0.1/kWh; 90% load factor)
- Turn off during plant shutdowns
 - Weekends
 - Between shifts

Controls

- Automatic based on temperature
- Automatic based on the status of make-up air units

Drive belt

Replace standard V-belt with cogged V-belt (~2% more efficient)

www.kamfri.com

Credit: Baart Industrial Group

Challenges Optimizing Chilled Water System Efficiency

No Settings can make all components happy simultaneously!

- Colder CHW
 - More chiller energy
 - Less distribution pump energy
- Cooler condensing water
 - More cooling tower fan energy
 - Less chiller energy
- Less condensing water flow
 - Less condenser pump energy
 - More cooling tower fan energy

Energy Conservation Measures – Chiller and CHW Pumps

- CHW supply temperature setpoint
 - Reset based Outdoor Air (OA) Dry Bulb (DB)
 - OA DB = 70 F, CHW = 42 F
 - OA DB = 50 F, CHW = 46 F
- Chiller
 - Select VFD chillers
 - Magnetic bearings (Lower turn down ratio)
- Primary pump
 - Convert to a primary-only system
 - Remove triple-duty valves

Energy Conservation Measures – Cooling Towers and CW Pumps

- CW supply temp. set point
 - Reset based on Outdoor Air Wet Bulb (WB)
 - OA WB = 68 F, CW = 75 F
 - OA WB = 47 F, CW = 60 F
- Cooling tower fan
 - Install VFD (typically 6:1 Turndown)
- Condenser pump (Be cautious!)
 - Install VFD (typically 2:1 Turndown)
 - Modulate pump speed to maintain 12 F range (Condensing Water DelT)
 - Check with operation manual before implementation

Energy Conservation Measures – Distribution System

- Distribution/Secondary Pumps
 - Install VFD
 - Differential pressure setpoint reset based on most-open valve position
- Piping
 - Change 3-way cooling coil control valves to 2-way valves
 - Remove triple-duty valves (balancing, check valve and shutoff valve)
 - Identify bottle necks
 - Loop piping network, so loads can be satisfied from both directions
 - Consider tertiary (booster) pumps for very remote loads

Technologies – Absorption Chiller

Only effective when there is a viable waste heat source that would otherwise be rejected

Credit: Thermax

Credit: Hitachi

Technologies – Heat Pump (or Heat Recovery) Chiller

- Recovering (not rejecting) condenser heat to supplement space/process heating
- Economic benefit largely dependents on NG vs electricity rates

Technologies – CHW System w/ Free Cooling

- Water-side economizer (Plate and Frame Heat Exchanger)
- Some chillers are starting to have this feature built-in

Source: Chiller System Design and Control by Trane

Technologies – Thermal Storage

- Cooling tower more efficient at night
- Avoid peak electricity use

Source: The University of Texas at Austin

Measurements

- Ports
 - Pressure-temperature ports
- Temperature
 - Temperature probe
- Differential pressure
 - Hydronic manometer
 - Fittings
- Flow rate
 - Ultrasonic flow meter
 - Hydronic manometer and math

Top 5 Energy Conservation Measures for Air Side

- Turn off AHUs, MAUs, and exhaust fans during plant shutdowns
- 2. Reset control temperature set points for AHUs
- 3. Regularly replace filters
- 4. Avoid overventilation to save energy for MAUs
- 5. Upgrade exhaust fan controls to automatic

Credit: Nortek

Credit: Safe Grain

Top 5 Energy Conservation Measures for Water Side

- Convert chilled water systems from constant to variable flow by replacing 3-way with 2way control valves and installing VFDs on secondary pumps
- 2. Convert cooling tower fans from **1- or 2-speed to variable speed** by installing VFDs
- 3. Reset chilled water supply temperature setpoint based on the process load/OAT
- 4. Reset condensing water entering-temperature setpoint based on the ambient wet bulb temperature
- 5. Convert condensing water systems from **constant to variable flow** by installing VFDs on condensing water pumps

Rules of Thumb and Unit Conversions

- 1°F increase of chilled water temperature improves the chiller efficiency by ~1.5%; 1°F decrease of condensing water temperature improves the chiller efficiency by ~1.5%
- Pump sizing: 2.0 2.4 GPM/ton for chilled water and 2.5 3.0 GPM/ton for condensing water
- Distribution pipe sizing: 10 ft/s water velocity or 4 ft w.c. pressure loss per 100 ft
- kW/ton = 12/EER; EER = COP × 3.413; kW/ton = 12/(COP × 3.413)
- 1 refrigeration ton = 12,000 Btu/hr
- 1 cooling tower ton = 15,000 Btu/hr

DOE Technical Resources

Resources, Tools, and Training Opportunities

- 1. Better Plants Energy Treasure Hunts Info Cards
- 2. Better Plants Energy Treasure Hunts Cheat Sheets
- 3. Excel Tools
- 4. Better Plants In-Plant Training Calendar
- 5. MEASUR Tool Suite

MEASUR – Psychrometric Calculator

PSYCHROMETRIC CALCULATOR

Dry Bulb Temp (T_{DB})

Humidity Metric

Wet Bulb Temp (TWB)

Barometric Pressure (Patm)

Calculate From Altitude

90	°F
Wet Bulb Temperature	•
85	°F
26.57	in Hg

Create Row

T _{DB} °F	RH %	T _{WB} °F	T _{DP} °F	h btu/lb	
90	38.65	70	61.5	36.7	Delete
90	51.55	75	69.8	41.7	Delete
90	65.96	80	77.1	47.3	Delete
90	82.04	85	83.8	53.7	Delete

Copy Table

RESULTS

HELP

Psychrometric Data

Dry Bulb (°F)	90
Relative Humidity (%)	82
Wet Bulb (°F)	85
Dew Point (°F)	83.8
Enthalpy (btu/lb)	53.7
Air Density (lb/ft³)	0.06301
Specific Volume (ft³/lb)	16.32
Barometric Pressure (in Hg)	26.57
Saturation Pressure (in Hg)	1.423
Saturated Humidity Ratio	0.035
Absolute Pressure (in H ₂ O)	26.57
Degree of Saturation	0.812
Humidity Ratio	0.0286

MEASUR – Weather Binning Calculator

MEASUR – Cooling Tower Make-up Water Calculator

Q & A

Submit Questions www.slido.com event code #DOE

Better Plants Online Learning Series

ENERGY TREASURE HUNTS WITH EPA

Thr, Aug 20, 2020 | 1:00 - 2:00 PM ET

PUMPS AND FANS

Thr, Aug 27, 2020 | 1:00 - 2:30 PM ET

PROCESS HEATING & WASTE HEAT REDUCTION

Thr, Sep 3, 2020 | 1:00 - 2:30 PM ET

FIELD VALIDATION

Thr, Sep 10, 2020 | 1:00 - 2:00 PM ET

ENERGY MANAGEMENT DURING A PANDEMIC

Thr, Sep 17, 2020 | 1:00 - 2:00 PM ET

MEASUR TOOL SUITE

Thr, Sep 24, 2020 | 1:00 - 2:00 PM ET

PROCESS COOLING

Thr, Oct 1, 2020 | 1:00 - 2:00 PM ET

BETTER BUILDINGS E-LEARNING CENTER

Additional Questions?

Please Contact Us

Follow us on Twitter @BetterPlantsDOE

Better Buildings Solution Center https://betterbuildingssolutioncenter.energy.gov/better-plants

Better Plants Inquiries BetterPlants@ee.doe.gov

Program Support ksanderson@retechadvisors.com

Wei Guo
Oak Ridge National Laboratory
guow@ornl.gov

Eli Levine
U.S. Department of Energy
eli.levine@ee.doe.gov
202-586-9929

